RRN6 and RRN7 encode subunits of a multiprotein complex essential for the initiation of rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae.

نویسندگان

  • D A Keys
  • L Vu
  • J S Steffan
  • J A Dodd
  • R T Yamamoto
  • Y Nogi
  • M Nomura
چکیده

Previously, we have isolated mutants of Saccharomyces cerevisiae primarily defective in the transcription of 35S rRNA genes by RNA polymerase I and have identified a number of genes (RRN genes) involved in this process. We have now cloned the RRN6 and RRN7 genes, determined their nucleotide sequences, and found that they encode proteins of calculated molecular weights of 102,000 and 60,300, respectively. Extracts prepared from rrn6 and rrn7 mutants were defective in in vitro transcription of rDNA templates. We used extracts from strains containing epitope-tagged wild-type Rrn6 or Rrn7 proteins to purify protein components that could complement these mutant extracts. By use of immunoaffinity purification combined with biochemical fractionation, we obtained a highly purified preparation (Rrn6/7 complex), which consisted of Rrn6p, Rrn7p, and another protein with an apparent molecular weight of 66,000, but which did not contain the TATA-binding protein (TBP). This complex complemented both rrn6 and rrn7 mutant extracts. Template commitment experiments carried out with this purified Rrn6/7 complex and with rrn6 mutant extracts have demonstrated that the Rrn6/7 complex does not bind stably to the rDNA template by itself, but its binding is dependent on the initial binding of some other factor(s) and that the Rrn6/7 complex is required for the formation of a transcription-competent preinitiation complex. These observations are discussed in comparison to in vitro rDNA transcription systems from higher eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae.

We report the cloning of RRN11, a gene coding for a 66-kDa protein essential for transcription initiation by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Rrn11 specifically complexes with two previously identified transcription factors, Rrn6 and Rrn7 (D. A. Keys, J. S. Steffan, J. A. Dodd, R. T. Yamamoto, Y. Nogi, and M. Nomura, Genes Dev. 8:2349-2362, 1994). The Rrn11-Rrn6-R...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

Structural insights into transcription initiation by yeast RNA polymerase I

In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre-rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi-subunit pre-initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, ...

متن کامل

An immunoaffinity purified Schizosaccharomyces pombe TBP-containing complex directs correct initiation of the S.pombe rRNA gene promoter.

The multi-protein complex SL1, containing TBP, which is essential for RNA polymerase I catalyzed transcription, has been analyzed in fission yeast. It was immunopurified based on association of component subunits with epitope-tagged TBP. To enable this analysis, a strain of Schizosaccharomyces pombe was created where the only functional TBP coding sequences were those of FLAG-TBP. RNA polymeras...

متن کامل

Structural mechanism of ATP-independent transcription initiation by RNA polymerase I

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 8 19  شماره 

صفحات  -

تاریخ انتشار 1994